
Beyond 128-bit SIMD in WebAssembly

Petr Penzin

Intel Corporation

November 6, 2019

Agenda

Discuss next steps in evolution of Wasm SIMD instruction set.

Proposal summary

I Add vectors operations analogous, at lane level, to existing Wasm SIMD
operations, but agnostic of the vector length

I Vector length defined by architecture and set by the runtime

Design Constraints

I Same Wasm binary to run all platforms

I Unambiguous instruction selection

I Backwards compatibility with existing Wasm SIMD instruction set

Alternatives

Longer fixed-width SIMD WebAssembly ISA

I Not universally supported in hardware

I Goes against WebAssembly’s design goal of representing the common set of
operations between hardware platforms

I Cross platform code generation is challenging

Proposal

We propose length-agnostic variants of operations already present in Wasm simd128
proposal

I Loads and stores work with consecutive memory locations, like simd128 loads and
stores

I Maximum vector length is set to match the hardware by runtime at startup

I New instructions to control the width of the vector

Types and instructions

New types and instructions
I vec . < type > – separate vector types for different lane types, size defaults to

maximum supported by hardware
I i8, i16, i32, i64 – integer
I f 32, f 64 – floating point

I vec . < type > .length – get number of elements in corresponding vector type

Types and instructions

Instructions extending existing operations in WebAssembly SIMD proposal

I vec . < type > . < op > – same lane-wise operation as in simd128 < op >,
applied to vector of vec . < type > .length

For example, vec .f 32.mul is identical to f 32x4.mul on a 4-lane vector,
vec .i32.add to i32x4.add , and so on

Example

Vector addition, c = a + b, sz is the size

(b l o c k $ l o o p
(b l o c k $ l o o p t o p

(b r i f $ l o o p (i 3 2 . l t (g e t l o c a l $ s z) (vec . f 3 2 . l e n g t h)))
vec . f 3 2 . l o a d (g e t l o c a l $a)
vec . f 3 2 . l o a d (g e t l o c a l $b)
vec . f 3 2 . add
vec . f 3 2 . s t o r e (g e t l o c a l $c)
; ; Decrement $ s z and i n c r e m e n t $a , $b , $c
(br $ l o o p t o p)

)
)
(b l o c k $ s c a l a r l o o p ; ; F i n i s h the r e m a i n i n g e l e m e n t s

Code generation

I Identical to simd128 for platforms that support only 128 bit SIMD

I Straight-forward extension to longer vectors on supporting platforms

Comparison against current SIMD proposal

I At 128-bit vector width operations are identical to current Wasm SIMD
operations with sole exception of lane shuffle

I Transparent to developer and toolchain

Extension: arbitrary length

Support for size manipulation not multiple of maximum length, to educe WebAssembly
and native instruction count.

Additional instructions

I vec . < type > .set length – set number of elements in corresponding vector type

Takes an unsigned argument, allowed use smaller number per runtime’s view of
the hardware

Example

Vector addition, c = a + b, sz is the size

l o c a l $ l e n i 3 2
(b l o c k $ l o o p

(b l o c k $ l o o p t o p
(b r i f $ l o o p (i 3 2 . eq (g e t l o c a l $ s z) (i 3 2 . c o n s t 0)))
(s e t l o c a l $ l e n (vec . f 3 2 . s e t l e n g t h (g e t l o c a l $ s z)))
vec . f 3 2 . l o a d (g e t l o c a l $a)
vec . f 3 2 . l o a d (g e t l o c a l $b)
vec . f 3 2 . add
vec . f 3 2 . s t o r e (g e t l o c a l $c)
; ; Decrement $ s z by $ l e n ; i n c r e m e n t $a , $b , and $c by $ l e n
(br $ l o o p t o p)

)
)

Code generation

Relatively straightforward for vector instruction sets and SIMD predication

I Simple mask generation, code generation changes only needed for loads and stores

I Straight-forward code generation for vector instruction sets

Thank you

