
Long vectors for WebAssembly

Petr Penzin

Intel Corporation

April 28, 2020

Agenda

I Vector operations with runtime-defined length
I Motivation
I Design Goals
I Proposal

I Poll

Motivation

I A number of discussions in the context of Wasm SIMD proposal regarding
operations longer than 128-bit12

I Existing runtime solutions
I Highway
I System.Numerics.Vector in .NET

1Github issue #29, and a version of this deck has been presented on November 6, 2019
2#210, #212

https://github.com/google/highway
https://docs.microsoft.com/en-us/dotnet/api/system.numerics.vector
https://github.com/WebAssembly/simd/issues/29
https://github.com/WebAssembly/simd/issues/210
https://github.com/WebAssembly/simd/issues/212

Design Goals

I Same Wasm binary to run all platforms

I Unambiguous instruction selection

I Easy transition from Wasm SIMD instruction set

Alternatives

Longer fixed-width SIMD WebAssembly ISA

I Not universally supported in hardware

I Goes against WebAssembly’s design goal of representing the common set of
operations between hardware platforms

I Cross platform code generation is challenging

Proposal

We propose length-agnostic variants of operations already present in Wasm simd128
proposal

I Loads and stores work with consecutive memory locations, like simd128 loads and
stores

I Maximum vector length is set to match the hardware by runtime at startup

Types and instructions

New types and instructions
I vec . < type > – separate vector types for different lane types, size defaults to

maximum supported by hardware
I i8, i16, i32, i64 – integer
I f 32, f 64 – floating point

I vec . < type > .length – get number of elements in corresponding vector type

Types and instructions

Instructions extending existing operations in WebAssembly SIMD proposal

I vec . < type > . < op > – same lane-wise operation as in simd128 < op >,
applied to vector of vec . < type > .length

For example, vec .f 32.mul is identical to f 32x4.mul on a 4-lane vector,
vec .i32.add to i32x4.add , and so on

Example

Vector addition, c = a + b, sz is the size

(b l o c k $ l o o p
(l o o p $ l o o p t o p

(b r i f $ l o o p (i 3 2 . l t (g e t l o c a l $ s z) (vec . f 3 2 . l e n g t h)))
vec . f 3 2 . l o a d (g e t l o c a l $a)
vec . f 3 2 . l o a d (g e t l o c a l $b)
vec . f 3 2 . add
vec . f 3 2 . s t o r e (g e t l o c a l $c)
; ; Decrement $ s z and i n c r e m e n t $a , $b , $c
(br $ l o o p t o p)

)
)
(b l o c k $ s c a l a r l o o p ; ; F i n i s h the r e m a i n i n g e l e m e n t s

Code generation

I Identical to simd128 for platforms that support only 128 bit SIMD

I Straight-forward extension to longer vectors on supporting platforms

Poll

Support phase 1 proposal for long vectors?

Thank you

Appendix A: Pure vectors

Proposal can be extended to support pure vectors - with user-visible length, but that
would be challenging to execute on existing hardware.
It can be done by adding the following instruction:

I vec . < type > .set length – set number of elements in corresponding vector type

Sets vector length to minimum between its argument and length dictated by
hardware, returns that value.

Example

Vector addition, c = a + b, sz is the size

l o c a l $ l e n i 3 2
(b l o c k $ l o o p

(l o o p $ l o o p t o p
(b r i f $ l o o p (i 3 2 . eq (g e t l o c a l $ s z) (i 3 2 . c o n s t 0)))
(s e t l o c a l $ l e n (vec . f 3 2 . s e t l e n g t h (g e t l o c a l $ s z)))
vec . f 3 2 . l o a d (g e t l o c a l $a)
vec . f 3 2 . l o a d (g e t l o c a l $b)
vec . f 3 2 . add
vec . f 3 2 . s t o r e (g e t l o c a l $c)
; ; Decrement $ s z by $ l e n ; i n c r e m e n t $a , $b , and $c by $ l e n
(br $ l o o p t o p)

)
)

Code generation

Advantages:

I Reduced Wasm instruction count

I Some alignment with SIMD instruction sets supporting masking

Disadvantages:

I High cost for SIMD instruction sets without masking

I Managing global state

This can be seen as a future or experimental option, but it is not ready to be
prototyped on widely available hardware.

Appendix B: Dynamic vector length

Different approaches to setting vector length:

1. Compile time constant - set when compiler runs, for example as in native SIMD
compilation

2. Variable - number of elements processed determined when operation executes

3. Run time constant - set when runtime starts, constant for individual operations

Compile time constant vector length

I The most ”static” instruction selection
I nonetheless, some platform-dependent code generation is required

I Scaling the length at runtime
I scaling down results in ”double pumping”
I scaling up is particularly challenging

Variable vector length

I The most compact code for loops
I nonetheless, some platform-dependent code generation is required

I Mutable global state
I Hardware support is sparse

I masking SIMD operations can be used
I vector instruction sets are a good fit, but are still rare

Runtime constant vector length

I Vector length is a runtime constant

I Support various fixed width SIMD architectures

I Straight-forward instruction selection

